1 %> @brief Used to calculate (number of factors)x(performance) curves
3 %> This class uses a reptt_sgs and a
fcon block (@ref fcon_mold) that has the @c no_factors property.
5 %> It populates the reptt_sgs
block with many replications of @c fcon_mold, with increasing values in the @c no_factors property
7 %> It has a @ref extract_reptt_sgs function for the GUI. However, a property box is not implemented at the moment.
9 %> Please note that a Standardization
block will be automatically inserted between the Feature Extraction
block and the Classifier.
15 %> =(1:nf in dataset). Vector with a list of numbers of factors to try.
18 %> SGS
object. It is optional if @ref data has more than 1 element. If @ref cube is passed, this property is ignored altogether.
26 %> = 0. Whether to parallelize the calculation
32 o.classtitle = '(
#factors)x(performance) curve';
33 o.moreactions = [o.moreactions, {
'go',
'extract_reptt'}];
36 function u = create_cube(o, data)
38 l1.estlabels = data.classlabels;
39 l1.testlabels = data.classlabels;
47 u.flag_parallel = o.flag_parallel;
49 u.postpr_test = o.postpr_test;
50 u.postpr_est = o.postpr_est;
54 methods(Access=
protected)
56 function out = do_use(o, data)
58 if isempty(o.no_factorss)
63 irverbose('INFO: trimmed verctor of numbers of factors because there were values above the number of features in the input dataset');
65 nff(nff > data.nf) = [];
69 bb = cell(1, neff); % Cell array of blocks
73 btemp.no_factors = nff(i);
76 blk.title = sprintf('%d factor%s', i,
iif(i == 1, '', 's'));
77 blk.blocks = {btemp, ss, cl};
82 u = o.create_cube(data);
87 sov = sov.read_log_cube(log);
90 out.title = [data.title,
iif(isempty(data.title),
'',
' - '),
'(#factors)x(%rate) curve - ', o.fcon_mold.classtitle,
'->', o.clssr.classtitle];
91 out.xname =
'Number of factors';
93 out.yname =
'Classification rate';
96 out.X = permute(sov.get_Y(
'rates'), [3, 2, 1]);
97 out.classes = zeros(size(out.X, 1), 1);
98 out.classlabels = {o.fcon_mold.get_description()};
99 out = out.assert_fix();
Cascade block: final instantializable class.
function irverbose(in s, in level)
Standardization (trained)
Base Sub-dataset Generation Specification (SGS) class.
Block that resolves estimato posterior probabilities into classes.
function use(in o, in data)
Applies block to data.
Records (test class)x([rejected, estimation class]) hits.
Feature Construction (FCon) base class.
Used to calculate (number of factors)x(performance) curves.
function iif(in cond, in x1, in x2)
Analysis Session (AS) base class.
function def_clssr(in out)
REpeated Train-Test - Block Cube.