1 %> @brief eClass-based feature selection
3 %> @todo Temporarily deactivated
5 %> Issue is similar to one wih LDA loadings: negative-positive-negative-positive-...
15 properties(SetAccess=
protected)
23 o.classtitle = 'eClass';
30 % function log = do_use(o, data)
31 % idxsobs = sgs_get_obs_idxs(o.
sgs, data);
32 % no_reps = length(idxsobs.reps);
36 % koeff = zeros(size(X, 2)+1, 1);
38 % for i_rep = 1:no_reps
39 % fprintf('$*$*$*$
as_fsel_eclass session %d/%d. $*$*$*$\n', i_rep, no_reps);
41 % idxstraintest = idxsobs.reps(i_rep).obs;
42 % d_train = data.map_rows(data, idxstraintest.train);
47 % for i_rule = 1:o.
clssr.no_rules
48 % koeff = koeff+sum(o.
clssr.rulesets(o.
clssr.rule_map(i_rule, 1)).rules(o.
clssr.rule_map(i_rule, 2)).pi, 2);
52 % % - Discards the bias
53 % % - Makes it a row vector to be more consistent with usual disposition of variables
as columns
54 % % - Absolute value is taken because negative values are
as important
as positive ones
55 % koeff = abs(koeff(2:end))';
58 % % Now the feature selection
61 % [values, indexes] = sort(koeff, 'descend');
62 % o.v = sort(indexes(1:o.nf_select));
64 % indexes = 1:size(X, 2);
65 % o.v = indexes(koeff/sum(koeff) >= o.threshold);
Base Sub-dataset Generation Specification (SGS) class.
Analysis Session (AS) base class.
eClass-based feature selection
Analysis Session that produces a log_as_fsel.