1 %> @brief (dataset %) x (classification rate) curve
3 %> @ingroup
as needsrevision
5 %> Runs a repeated sub-sampling loop for a given percentual with recording each generated @ref
ttlog. Then,
6 %> Increases this percentual, runs the cross-validation loop again, and so on.
8 %> @sa uip_dsperc_x_rate.m
12 %> Note that only the first element of evaluator's @c log_mold will have effect. The others will be reset (if any).
14 %> =.1:.1:.9. Sequence of percentages for training
15 percs_train = .1:.1:.9;;
16 %> = .1. Percentage for testing. Note that <code>prect_test + percs_train(end)</code> should not exceed 1 (100%)
23 o.classtitle = '(dataset%)x(performance) curve';
24 o.flag_ui = 0; % Not published in GUI
28 methods(Access=protected)
29 function log = do_use(o, data)
36 if strcmp(o.evaluator.sgs.type, 'fixed')
37 irerror('Evaluator''s SGS''s type cannot be ''fixed''!');
40 o.evaluator.log_mold = o.evaluator.log_mold(1); % Resets evaluator's log_mold to its first element.
42 npercs = numel(o.percs_train);
43 nclssr = numel(o.evaluator.block_mold);
46 log.celldata = cell(nclssr, npercs);
49 o.evaluator.sgs.bites = [o.percs_train(iperc), o.perc_test];
51 log.celldata(:, iperc) = cellfun(@(x) (x.get_rates()),
log_cube.logs, 'UniformOutput', 0);
54 log.fea_x = o.percs_train*100;
55 log.xname = 'Percent of dataset used in training';
57 log.yname = 'Classification rate';
59 log.rownames = cellfun(@(x) x.get_description(), o.evaluator.block_mold(:)', 'UniformOutput', 0);
Base Sub-dataset Generation Specification (SGS) class.
Log generated by a reptt_blockcube.
Analysis Session (AS) base class.
(dataset %) x (classification rate) curve
REpeated Train-Test - Block Cube.
Learning curve: (percent dataset used for training)x(classification rate)