1 %> @brief Partial Least Squares Transformation aka PLSDA
3 %> This
function uses @c plsregress() from MATLAB's Statistics Toolbox
5 %> The "Y" in the PLS formulation used is <code>
classes2boolean(data.classes)</code>
10 %> Number of factors to feature in the transformed dataset (default: 10).
16 o.classtitle = 'Partial Least Squares';
19 o.L_fea_prefix = 'PLS';
23 methods(Access=protected)
24 function o = do_train(o, data)
25 % o.L =
irootlab_pls(data.X, data.classes, o.no_factors);
26 [o.L, dummy] = plsregress(data.X,
classes2boolean(data.classes), o.no_factors);
27 o.L_fea_x = data.fea_x;
Feature Construction - Linear Transformations base class.
function classes2boolean(in classes, in no_different)
function irootlab_pls(in X, in Y, in no_factors)
Important: X-variables (columns of X) need to be standardized, otherwise the function will give an er...
Partial Least Squares Transformation aka PLSDA.