1 %> @brief Multivariate Curve Resolution
3 %> Uses the Toolbox from the University of Barcelona (http:
5 %> The use() method calls an <b>interative</b>
function from that toolbox. This <a href="mcr.pdf">configuration</a> was used to obtain the results published in [2].
9 %> [1] J. Jaumot, R. Gargallo, a Dejuan, and R. Tauler, “A graphical user-friendly interface
for MCR-ALS: a
new tool
for multivariate curve
10 %>resolution in MATLAB,” Chemometr. Intell. Lab., vol. 76, no. 1, pp. 101-110, Mar. 2005.
12 %> [2] I. I. Patel et al., “High contrast images of uterine tissue derived
using Raman microspectroscopy with the empty modelling approach of
13 %> multivariate curve resolution-alternating least squares,” Analyst, no. 23, pp. 4950-4959, Dec. 2011.
18 flag_rotate_factors = 1;
24 o.
classtitle =
'Multivariate Curve Resolution';
30 methods(Access=
protected)
32 function out = do_use(o, data)
34 % Uses PCA
for guess of initial
"spectra", but not recommended.
36 opca = opca.
setbatch({
'no_factors', opca.no_factors, ...
37 'flag_rotate_factors', 0});
38 opca = opca.train(data);
40 nfact = size(opca.L, 2);
41 [copt,sopt,sdopt,ropt,areaopt,rtopt]=als(data.X, abs(opca.L
'), 1, 50, 0.0001, ones(1, nfact), 0, 0, [], []);
43 o.L = adjust_unitnorm(sopt');
47 out.fea_x = 1:size(copt, 2);
Principal Component Analysis.
Feature Construction - Linear Transformations base class.
function setbatch(in o, in params)
Sets several properties of an object at once.
Multivariate Curve Resolution.
Property classtitle
Class Title. Should have a descriptive name, as short as possible.