1 %>@brief Classification of Chemicals
using LDC and cross-validation
5 %> Note that the averages in the scatterplots are the confusion matrix diagonal values.
7 %>@image html demo_rater_result03.png
20 log_raterout = rater01.use(ddemo); % The calculation
24 % Creates report with all confusion matrices
26 o = o.setbatch({
'flag_individual', 1});
27 htmllog = o.use(log_raterout);
29 htmllog.open_in_browser();
31 % The next plots show the distributions of the classification rates along the diagonal of the confusion matrix
33 % ds_rows is an array of datasets. Each dataset contains the data from one row of the confusion matrix.
34 % The variables in the dataset are the columns of the confusion matrix. The rows in the dataset are the foldwise percentages
35 ds_rows = log_raterout.extract_datasets();
38 o = o.setbatch({
'type_distr', 1, ...
43 no_plots = numel(ds_rows);
45 subplot(1, no_plots, i);
51 p =
get(gca,
'position');
53 p(4) = 0.62; % height;
54 set(gca,
'position', p);
function data_select_hierarchy(in data, in hierarchy)
function maximize_window(in h, in aspectratio, in normalizedsize)
estlog 's HTML (confusion matrices)
function colors_markers()
function load_data_she5trays()