1 %>@brief (dataset %) x (classification rate %) curve to check sample size
5 %> Allows to verify whether the classification rate would tend to improve if there were more data; or whether apparently there is more data than needed.
13 % Applied some feature reduction to eliminate the problem with singular pooled covariance matrix in classify()
15 o = o.
setbatch({
'no_factors', 20, ...
16 'flag_rotate_factors', 0});
18 fcon_pca01 = fcon_pca01.train(ddemo);
19 ddemo = fcon_pca01.use(ddemo);
23 % Classifiers to be used
26 o = o.setbatch({
'type',
'linear'});
31 o = o.setbatch({
'type',
'quadratic'});
36 clssr_d03.title =
'SVM';
41 o.estlabels = ddemo.classlabels;
42 o.testlabels = ddemo.classlabels;
43 estlog_classxclass01 = o;
46 o = o.setbatch({
'flag_group', 0, ...
47 'flag_perclass', 1, ...
50 'bites', [0.9 0.1], ...
51 'bites_fixed', [90 10], ...
56 o = o.setbatch({
'decisionthreshold', 0});
60 o = o.setbatch({
'postpr_test', [], ...
61 'postpr_est', decider01, ...
62 'log_mold', {estlog_classxclass01}, ...
63 'block_mold', {clssr_d01, clssr_d02, clssr_d03}, ...
71 o.percs_train = .1:.05:.90;
85 title(sprintf(
'Number of spectra in dataset: %d', ddemo.no));
Principal Component Analysis.
function data_select_hierarchy(in data, in hierarchy)
Linear and Quadratic discriminant.
function maximize_window(in h, in aspectratio, in normalizedsize)
Block that resolves estimato posterior probabilities into classes.
function setbatch(in o, in params)
function save_as_png(in h, in fn, in dpi)
Records (test class)x([rejected, estimation class]) hits.
function load_data_she5trays()
Visualization - Histograms from log_celldata.
Support Vector Machine Classifier using LibSVM.
(dataset %) x (classification rate) curve
REpeated Train-Test - Block Cube.