1 %> @brief Outlier Removal base
class
3 %> There are two possible ways to generate output from the @c use() method:
5 %> <li> @c flag_mark_only = 0. Generates two datasets. The first one contains the inliers and the second one the
7 %> <li> @c flag_mark_only = 1. Marks the outliers with class -2.</li>
9 %> train() and use() don't need to be called with the same dataset, but
10 %> the datasets do need to have the same number of rows.
15 properties(SetAccess=protected)
20 %> =1. Whether to mark outliers class
as -2, or else to generate two datasets in the output.
24 methods(Access=protected)
25 function o = do_train(o, data)
26 o = o.calculate_map(data);
29 function datasets = do_use(o, data)
34 datasets.classes(map_out) = -2;
35 datasets = datasets.eliminate_unused_classlabels();
37 datasets = [data.map_rows(o.map), data.map_rows(map_out)];
44 o.classtitle = 'Outlier Removal';
50 %> Abstract. This function must assign the @ref map property with the indexes of the <b>inliers</b>.
51 function o = calculate_map(o, data)
Cascade block: final instantializable class.
Outlier Removal base class.
Analysis Session (AS) base class.