1 %> @brief One-versus-
"control" classifier
3 %> Currently not multitrainable
6 % must contain a
block object that will be replicated
as needed
12 o.classtitle = 'One-versus-reference';
16 methods(Access=protected)
17 function o = do_boot(o)
21 % Adds classifiers when new classes are presented
22 function o = do_train(o, data)
23 o.classlabels = data.classlabels;
29 % pieces =
data_split_classes(data); % Por enquanto assim, mas dava pra tentar um split unico
32 blk = o.block_mold.boot();
34 o.blocks(i1-1).classlabels = data.classlabels(1, i1);
39 %> Uses blocks and aggregates @c est
's using @c o.esag
42 function est = do_use(o, data)
45 for i = nb:-1:1 % for allocation of ests_
46 [o.blocks(i).block, ee] = o.blocks(i).block.use(data);
49 ests_(i).classlabels = o.classlabels;
50 ests_(i).X = zeros(data.no, nb);
51 ests_(i).X = repmat(ee.X(:, 2)/(nb-1), 1, nb); % "Dilutes" the "all" posterior
52 ests_(i).X(:, i) = ee.X(:, 1);
55 est = o.esag.use(ests_);
Base class for all ensemble classifiers.
function data_split_classmap(in data, in maps)
function data_split_classes(in data, in hierarchy)
One-versus-"control" classifier.
Analysis Session (AS) base class.