
AOSSSDocumentation
Release 17.12.21

Julio Trevisan

Dec 21, 2017

CONTENTS

1 Introduction 3

2 Installation 5

3 Processing simulation results 7

4 Spectrometre Modes & Spectral Lines of Interest at Redshift 15

5 Scale to Magnitude 17

6 Index of applications (scripts) 19

7 Photometry & Colors API 23

i

ii

AOSSSDocumentation, Release 17.12.21

Welcome!

CONTENTS 1

AOSSSDocumentation, Release 17.12.21

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

Project AOSSS was started to support telescope+spectrograph simulations carried out at the WebSim-
COMPASS plaftorm.

It provides tools to:

• create input data cubes for that plataform

• download, visualize, generate reports, and organize results from the simulator

In addition, there is a tool to plot spectral lines of interest versus spectrograph modes coverage at given
redshifts.

The package also contains a library (API - application programming interface) to deal with photometric
problems and to calculate the color of a spectrum. This API is used in the project applications, but may
be used more broadly.

1.1 Acknowledgement
Funded by FAPESP - Research Support Foundation of the State of São Paulo, Brazil (2016-2017).

1.2 Contact
For bugs reports, questions, suggestions, etc., please open an issue at the project site on GitHub: http:
//github.com/trevisanj/aosss.

3

http://websim-compass.obspm.fr/
http://websim-compass.obspm.fr/
http://github.com/trevisanj/aosss
http://github.com/trevisanj/aosss

AOSSSDocumentation, Release 17.12.21

4 Chapter 1. Introduction

CHAPTER
TWO

INSTALLATION

If you have Python 3 installed, then simply type:

pip install aosss

2.1 Pre-requisites
2.1.1 Python 3
If you need to set up your Python 3 environment, one option is to visit project F311 installation instruc-
tions at http://trevisanj.github.io/f311/install.html. That page also provides a troubleshooting section
that applies.

2.2 Installing AOSSS in developermode
This is an alternative to the “pip” at the beginning of this section. Use this option if you would like to
download and modify the Python source code.

First clone the “aosss” GitHub repository:

git clone ssh://git@github.com/trevisanj/aosss.git

or

git clone http://github.com/trevisanj/aosss

Then, install AOSSS in developer mode:

cd aosss
python setup.py develop

2.3 Upgrade aosss
Package aosss can be upgraded to a new version by typing:

pip install aosss --upgrade

5

http://trevisanj.github.io/f311/install.html

AOSSSDocumentation, Release 17.12.21

6 Chapter 2. Installation

CHAPTER
THREE

PROCESSING SIMULATIONRESULTS

3.1 Download simulation results
The following example assumes that simulations coded from 1700 to 1721 already finished on the
WebSim-COMPASS server.

get-compass.py is a Python script based on get-compass.sh which can be downloaded from the WebSim-
COMPASS webpage. The former enhances the latter in which:

• It can download several simulations in a single command

• It is possible to specify the “stage” of the simulation pipeline to download results from. For example,
it is possible to download only the “spintg” file, skipping the large data cubes from intermediary
stages.

get-compass.py 1700-1721 --stage spintg

will download results for simulations C001700, C001701, . . . , C001721 into the local directory, after
which you will see files C*.fits, C*.par, C*.out

3.2 Organize simulation results
3.2.1 Group resulting spectra in a single file
This step is required for later analysis using splisted.py

The following command will group all files “C*_spintg.fits” into a single “.splist” (Spectrum List) file,
which can later be opened using splisted.py

$ create-spectrum-lists.py
.
.
.
[INFO] Created file './group-spintg-00-C001700-C001721.splist'
[INFO] Created file './group-spintg-01-C001712-C001712.splist'

3.2.2 Create reports (optional)
This step creates HTML pages (one for each simulation) that help to navigate through the simulation
results.

create-simulation-reports.py 1700-1721

7

AOSSSDocumentation, Release 17.12.21

3.2.3 Organize the directory
At this point, the current directory has a large number of files (“.fits”, “.html”, “.png”, etc.), whereas for
our analysis, only the “.splist” file is required.

organize-directory.py will:

• create a directory named “raw” where it will copy “.fits”, “.par” and “.out” files

• create a directory named “reports” where it will copy “.html” and “.png” files. In addition, it will
create a file “index.html” that will serve as an index for the “.html” files

organize-directory.py
.
.
.
[INFO] - Move 108 objects
[INFO] - Create 'reports/index.html'
Continue (Y/n)?

3.3 Browse through reports
cd reports
xdg-open index.html

will open file “index.html” in browser

8 Chapter 3. Processing simulation results

AOSSSDocumentation, Release 17.12.21

Figure – Reports index

3.4 Edit Spectrum List file
If you types the commands above to visualize reports, you will need to go back one directory level:

3.4. Edit Spectrum List file 9

AOSSSDocumentation, Release 17.12.21

cd ..

Now open the Spectrum List Editor (part of the f311 package):

splisted.py group-spintg-00-C001700-C001721.splist

In the following steps, we will:

• Plot the spectra

• Calculate the Signal-to-noise ratio (SNR)

• Plot the Detector Integration Time (DIT) vs the SNR

1. Select all the spectra: click inside the table, then press Ctrl+A

2. Click on “Plot Overlapped”. A plot window opens. From this plot, we can see that the region
16508-16534 seems to be free of atmospheric contamination. You may close the plot window

10 Chapter 3. Processing simulation results

AOSSSDocumentation, Release 17.12.21

3. Click on “To Scalar”. Another window opens

4. Type “ToScalar_SNR(16508, 16534)”

5. Click on “OK”

6. Notice that a new column “SNR” appear in the table. Click on “X-Y Plot”

3.4. Edit Spectrum List file 11

AOSSSDocumentation, Release 17.12.21

7. Select “Error bars”

8. Select “OBS_DIT”

9. Click on “Redraw”

12 Chapter 3. Processing simulation results

AOSSSDocumentation, Release 17.12.21

3.4. Edit Spectrum List file 13

AOSSSDocumentation, Release 17.12.21

14 Chapter 3. Processing simulation results

CHAPTER
FOUR

SPECTROMETREMODES& SPECTRAL LINESOF INTERESTAT
REDSHIFT

wavelength-chart.py

Figure – Lines with zero redshift

This application creates a chart stacking the MOSAIC spectrograph wavelength coverages and an ESO
Earth atmospheric model. This may serve either as a reference to MOSAIC wavelength invervals for each
mode (on this, see also list-mosaic-modes.py) or to verify the Earth atmospheric emission/trasmission
in a wavelength region of observational interest.

It is also possible to inform a redshift so that the chemical lines will be accordingly displaced:

15

AOSSSDocumentation, Release 17.12.21

Figure – z=3.5

16 Chapter 4. SpectrometreModes & Spectral Lines of Interest at Redshift

CHAPTER
FIVE

SCALE TOMAGNITUDE

Both splisted.py and cubeed.py have a “Scale to Magnitude” button that can be used to scale spectra
to a desired magnitude in a given magnitude system (standard/AB/Vega) (Figure 5.1).

Figure 5.1: – “Scale to Magnitude” window

17

AOSSSDocumentation, Release 17.12.21

18 Chapter 5. Scale toMagnitude

CHAPTER
SIX

INDEXOFAPPLICATIONS (SCRIPTS)

This chapter is a reference to all scripts in project AOSSS

6.1 Script create-simulation-reports.py
usage: create-simulation-reports.py [-h] [--dir [DIR]] [--max N] N [N ...]

Creates HTML reports from WebSim-COMPASS output files

positional arguments:
N List of simulation numbers (single value and ranges accepted,

e.g. 1004, 1004-1040)

optional arguments:
-h, --help show this help message and exit
--dir [DIR] Input directory (default: .)
--max N Maximum allowed number of reports (default: 100)

This script belongs to package aosss

6.2 Script create-spectrum-lists.py
usage: create-spectrum-lists.py [-h] [--stage [STAGE]]

Create several .splist (spectrum list) files from WebSim-COMPASS output files; groups spectra that␣
→˓share same wavelength vector

All spectra in each .splist file will have the same wavelength vector

optional arguments:
-h, --help show this help message and exit
--stage [STAGE] Websim-Compass pipeline stage (will collect files named,

e.g., C000793_<stage>.fits) (default: spintg)

This script belongs to package aosss

6.3 Script get-compass.py
usage: get-compass.py [-h] [--max N] [--stage [STAGE]] N [N ...]

Downloads WebSim-COMPASS simulations

Based on shell script by Mathieu Puech

19

AOSSSDocumentation, Release 17.12.21

Note Skips simulations for existing files in local directory starting with
that simulation ID.
Example: if it finds file(s) "C001006*", will skip simulation C001006

Note Does not create any directory (actually creates it but deletes later).
All files stored in local directory!

Note Will work only on if os.name == "posix" (Linux, UNIX ...)

positional arguments:
N List of simulation numbers (single value and ranges

accepted, e.g. 1004, 1004-1040)

optional arguments:
-h, --help show this help message and exit
--max N Maximum number of simulations to get (default: 100)
--stage [STAGE] Websim-Compass pipeline stage: if specified, will download

files named, e.g., C000793_<stage>.fits (**note**: .par and
.out files are always downloaded) (default: all)

This script belongs to package aosss

6.4 Script list-mosaic-modes.py
usage: list-mosaic-modes.py [-h] [search]

Lists MOSAIC Spectrograph modes

positional arguments:
search Search string (optional) (e.g., "HMM") (default: None)

optional arguments:
-h, --help show this help message and exit

This script belongs to package aosss

6.5 Script organize-directory.py
usage: organize-directory.py [-h]

Organizes simulation directory (creates folders, moves files, creates 'index.html')

- moves 'root/report-*' to 'root/reports'
- moves 'root/C*' to 'root/raw'
- moves 'root/raw/simgroup*' to 'root/'
- moves 'root/raw/report-*' to 'root/reports'
- moves 'root/raw/group*.splist' to 'root'
- [re]creates 'root/reports/index.html'

This script can be run from one of these directories:
- 'root' -- a directory containing at least one of these directories: 'reports', 'raw'
- 'root/raw'
- 'root/reports'

The script will use some rules to try to figure out where it is running from

20 Chapter 6. Index of applications (scripts)

AOSSSDocumentation, Release 17.12.21

optional arguments:
-h, --help show this help message and exit

This script belongs to package aosss

6.6 Script cubeed.py
usage: cubeed.py [-h] [fn]

Data Cube Editor, import/export WebSim-COMPASS data cubes

positional arguments:
fn file name, supports 'FITS Sparse Data Cube (storage to take less

disk space)' and '' (default: None)

optional arguments:
-h, --help show this help message and exit

This script belongs to package aosss

6.7 Script splisted.py
usage: splisted.py [-h] [fn]

Spectrum List Editor

positional arguments:
fn file name, supports 'FITS Spectrum List' only at the moment

(default: None)

optional arguments:
-h, --help show this help message and exit

This script belongs to package aosss

6.8 Script wavelength-chart.py
usage: wavelength-chart.py [-h] [--plot]

Draws chart showing spectral lines of interest, spectrograph wavelength ranges, ESO atmospheric␣
→˓model, etc.

Two modes are available:
- GUI mode (default): opens a GUI allowing for setup parameters
- Plot mode (--plot): plots the chart directly in default way

optional arguments:
-h, --help show this help message and exit
--plot Plot mode (default is GUI mode) (default: False)

This script belongs to package aosss

6.6. Script cubeed.py 21

AOSSSDocumentation, Release 17.12.21

22 Chapter 6. Index of applications (scripts)

CHAPTER
SEVEN

PHOTOMETRY&COLORSAPI

7.1 Introduction
This section illustrates the API that was developed to solve photometry-related and color-conversion-
related problems to compose the applications cubeed.py and splisted.py. Some usage examples of this
API in further contexts are shown below.

7.2 Examples
7.2.1 Plot bandpass filter shapes
import aosss.physics as ph
import matplotlib.pyplot as plt
import numpy as np

l0, lf = 3000, 250000
x = np.logspace(np.log10(l0), np.log10(lf), 1000, base=10.)

ax = plt.subplot(211)
for name in "UBVRI":

bp = ph.UBVTabulated(name)
plt.semilogx(x, bp.ufunc()(x), label=name)

plt.xlim([l0, lf])
plt.title("Tabulated")

plt.subplot(212, sharex=ax)
for name in "UBVRIYJHKLMNQ":

bp = ph.UBVParametric(name)
plt.semilogx(x, bp.ufunc()(x), label=name)

plt.xlim([l0, lf])
plt.xlabel("Wavelength (\AA)")
plt.title("Parametric")
l = plt.legend(loc='lower right')

plt.tight_layout()
plt.show()

7.2.2 Passing spectrum throught bandpass filter
import aosss.physics as ph
import matplotlib.pyplot as plt
import numpy as np

23

AOSSSDocumentation, Release 17.12.21

Figure 7.1: – Bandpass filter shapes in both tabulated and parametric formats.

24 Chapter 7. Photometry & Colors API

AOSSSDocumentation, Release 17.12.21

BAND_NAME = "B"
STYLE = {"color": (0, 0, 0), "lw": 2}
sp = ph.get_vega_spectrum()

bp = ph.UBVTabulated(BAND_NAME)
filtered = sp*bp
x_band = sp.x[np.logical_and(sp.x >= bp.l0, sp.x <= bp.lf)]

ax = plt.subplot(311)
plt.plot(sp.x, sp.y, **STYLE)
plt.title("Source Spectrum (Vega)")

plt.subplot(312, sharex=ax)
plt.plot(x_band, bp.ufunc()(x_band), **STYLE)
plt.ylim([0, 1.05])
plt.title("Bandpass Filter (%s)" % BAND_NAME)

plt.subplot(313, sharex=ax)
plt.plot(filtered.x, filtered.y, **STYLE)
plt.title("Filtered Spectrum")
plt.xlabel("Wavelength (\AA)")

ax.set_xlim([bp.l0-100, bp.lf+100])
plt.tight_layout()
plt.show()

Figure 7.2: – Original spectrum, bandpass filter, and filtered spectrum.

7.2. Examples 25

AOSSSDocumentation, Release 17.12.21

7.2.3 Magnitude of spectrum for several bands and systems
The following example compares flux-to-magnitude conversion of the Vega spectrum for different mag-
nitude systems.

import f311.physics as ph
import tabulate
systems = ["stdflux", "ab", "vega"]
bands = "UBVRIJHK"
sp = ph.get_vega_spectrum()
rows = [([band]+[ph.calc_mag(sp, band, system) for system in systems]) for band in bands]
print(tabulate.tabulate(rows, ["band"]+systems))

This code results in the following table:

band stdflux ab vega
------ ----------- ---------- ------
U 0.00572505 0.761594 -0
B 0.0696287 -0.10383 -0
V 0.0218067 0.0191189 -0
R 0.0359559 0.214645 -0
I 0.0661095 0.449825 -0
J -0.0150993 0.874666 -0
H 0.0315447 1.34805 -0
K 0.0246046 1.85948 -0

7.2.4 Convert spectra to RGB colors
The following code plots blackbody spectra using color calculated from their respective spectra. This
procedure can be applied to any spectrum.

Plots blackbody curves (normalized to max=1.0) for red, yellow and blue stars;
Calculates colors for these stars

import matplotlib.pyplot as plt
import numpy as np
import aosss.physics as ph
import f311

color, temperature (K)
stars = [("blue", 10000),

("yellow", 5700),
("red", 4000),
("very red", 3000),
]

h = 6.626e-34
c = 3.0e+8
k = 1.38e-23

def planck(wav, T):
"""
Calculates blackbody curve. wav in angstrom, T in kelvin. Returns intensity vector

Adapted from https://stackoverflow.com/questions/22417484/plancks-formula-for-blackbody-spectrum
"""

wav_ = wav*1e-10 # converts to m

a = 2.0*h*c**2
b = h*c/(wav_ * k * T)

26 Chapter 7. Photometry & Colors API

AOSSSDocumentation, Release 17.12.21

intensity = a/ ((wav_ ** 5) * (np.exp(b) - 1.0))
return intensity

x-axis wavelength in angstrom
wavelengths = np.linspace(10., 30000., 1000)

plt.style.use("dark_background")
for name, temperature in stars:

flux = planck(wavelengths, temperature)
flux /= np.max(flux)
color = ph.spectrum_to_rgb(f311.Spectrum(wavelengths, flux))
plt.plot(wavelengths, flux, color=color, label="{} star ({} K)".format(name, temperature))

plt.legend(loc=0)
plt.xlabel("Wavelength (angstrom)")
plt.ylabel("Flux (a.u.)")
plt.title("Normalized blackbody curves")
plt.tight_layout()
plt.show()

Figure 7.3: – Blackbody spectra painted with colors calculated from the spectra themselves.

7.2. Examples 27

	Introduction
	Installation
	Processing simulation results
	Spectrometre Modes & Spectral Lines of Interest at Redshift
	Scale to Magnitude
	Index of applications (scripts)
	Photometry & Colors API

