IRootLab demos

The following examples demonstrate the use of IRootLab library to analyse data and generate figures. The directories are roughly organized by dataset.


DATA_ARTIFICIAL

2-feature dataset created using gendata. Most demos here show 2-dimensional classification regions
      DEMO_BAGGING_SVM Bagging example using SVM classifier and drawing classification regions.  \|/  
      DEMO_CLSSR_D Draws classification regions for classifiers LDC/QDC  \|/  
      DEMO_CLSSR_KNN Draws classification regions for classifier k-NN  \|/  
      DEMO_CLSSR_TREE Draws classification regions for the Tree classifier  \|/  
      DEMO_ECLASS_ANIMATION Shows evolution of classifier eClass, saves animated GIF.  \|/  
      DEMO_ECLASS_ARTIFICIAL Draws classification regions for classifier eClass  \|/  

DATA_BRAIN

Ketan's brain cancer dataset, no=439, nf=235, 3 classes
      DEMO_RATER_BRAIN Classification of Brain data using LDC classifier, leave-one-out cross-validation  \|/  
      DEMO_U_TEST_PER_WAVENUMBER U-test per wavenumber is performed for one-versus-one datasets (2-class datasets)  \|/  

DATA_SHE

Syrian Hamster Embryo (SHE) assay dataset, 2 class levels: <chemical>|<transformation>; 5 * 2 = 10 classes; no=600; nf=58

      BOTH

Use both levels of SHE dataset in the analysis
            DEMO_BMTABLE Biomarkers of Non-transformed vs. Transformed, separated by Chemical  \|/  
            DEMO_DECIDERS_AND_GRAGS Different ways to use per-spectrum prediction aggregation (grag), and decision thresholds (decider)  \|/  

      CHEMICALS

Analyses using class level 1 only: {'B[a]P', '3-MCA', 'Ant', '2,4dT', 'o-T'}
            DEMO_CROSSCALCULATED_LDA Cross-calculated LDA scores  \|/  
            DEMO_PCALDA PCA-LDA demo, scores plots, cluster vectors  \|/  
            DEMO_RATER Classification of Chemicals using LDC and cross-validation  \|/  

      TRANSFORMATION

Analyses using class level 2 only: {'Non-transformed', 'Transformed'}
            DEMO_AS_DSPERC_X_RATE (dataset %) x (classification rate %) curve to check sample size  \|/  
            DEMO_DOES_BAGGING_HELP Tracking the improvement of classification with addition of component classifiers  \|/  
            DEMO_FACTORSCURVE (number of factors)X(Classification rate) curve  \|/  
            DEMO_FEATURE_HISTOGRAM_COLORS Shows different ways to paint the same Feature Histogram  \|/  
            DEMO_FORWARD Forward feature selection demo  \|/  
            DEMO_GRIDSEARCH_KNN_AND_PCA Combined optimization of PCA number of factors & k-NN k  \|/  
            DEMO_GRIDSEARCH_KNN_K Grid search to obtain best k-NN's k  \|/  
            DEMO_GRIDSEARCH_PCA_DISCRIMINANT Grid search to simultaneously optimize (PCA number of factors) x ('linear'/'quadratic')  \|/  

DATA_WINE

Wine dataset from UCI repository - http://archive.ics.uci.edu/ml/datasets/Wine; no=178; nf=13; nc=3
      DEMO_ECLASS_INCREMENTAL_LEARNING Increase of classification rate as eClass is incrementally trained  \|/  
      DEMO_SVM_C_GAMMA Grid search optimization of SVM (C, gamma) (Gaussian Kernel)  \|/  

INTROSPECTION

Self-checking of IRootLab directory
      DEMO_CLASSES_HTML Generates IRootLab classes hierarchical tree in HTML, using object colors.  \|/  
      DEMO_CLASSES_TXT Creates a CSV file with a list of classes, similar to what is seen in blockmenu.m  \|/  

OTHER_DATA

Others and other data
      DEMO_IMPORT_FISHERIRIS Shows how to assemble a dataset from existing MATLAB matrices (Fisher Iris data example)  \|/  

PREPROCESSING

Pre-processing demos
      DEMO_PRE_BC_RUBBER Demonstrates the Convex Polynomial Line baseline correction  \|/  
      DEMO_RAMAN_PREPROCESS Pre-processing of Raman data: Wavelet-De-noising, Polynomial Baseline Correction, Vector Normalization  \|/  

SAMPLEDATA

Datasets included with IRootLab releases. After clicking on file, new dataset can be handled in objtool
      IROOTLAB_SETUP% V V  \|/  
      LOAD_DATA_HINT Loads the hint dataset: this dataset containg one spectrum only: 1800-900 cm^-1  \|/  
      LOAD_DATA_KETAN_BRAIN_ATR Loads Ketan's brain cancer dataset  \|/  
      LOAD_DATA_MATT_NANOPARTICLES_SYNCHROTRON Loads Matt's synchrotron data (5 spectra only)  \|/  
      LOAD_DATA_RAMAN_SAMPLE Loads sample data raman_sample.mat  \|/  
      LOAD_DATA_SHE5TRAYS Loads sample data she5trays.mat  \|/  
      LOAD_DATA_UCI_WINE Loads sample data userdata_nc2nf2.txt  \|/  
      LOAD_DATA_UGLYSPECTRUM Loads sample data uglyspectrum.mat  \|/  
      LOAD_DATA_USERDATA_NC2NF2 Loads sample data userdata_nc2nf2.txt  \|/  
      SAMPLEDATA_VIEW_ALL Plots all sample datasets in separate figures  \|/