3 %> @brief Calculates the stability curve 
for a set of feature subsets
 
    5 %> This 
function is suitable 
for feature subsets found 
using Sequential Forward Feature Selection
 
    7 %> Kuncheva
's "consistency" formula is I_c = (r-k^2/nf)/(k-k^2/nf), where r is the number of common elements in the two sets, and k is the  
    8 %> number of elements of either sets 
   11 %> <h3>References</h3> 
   13 %> Kuncheva, L. I. A stability index for feature selection, 390-395. 
   15 %> @param subsets matrix or cell of subsets. If matrix, each row is a subset. A subset contains feature indexes. If cell of subsets, all 
   16 %>                subsets must have the same number of elements 
   17 %> @param nf Number of features 
   18 %> @param type ='kun
'. Type of stability measuse. Possibilities are: 
   19 %>   @arg 'kun
' Kuncheva's Stability Index
 
   20 %>   @arg ... (open 
for others)
 
   22 %>   @arg 
'uni' evaluates position in subsets individually
 
   23 %>   @arg 
'mul' evaluates considering m-sized subsets (m = 1..k)
 
   25 %> @
return y nf x stability curve
 
   28 if nargin < 3 || isempty(type)
 
   32 if nargin < 4 || isempty(type2)
 
   35 flag_uni = strcmp(type2, 'uni');
 
   37 %> translates type into a function handle
 
   42         irerror(sprintf('Feature consistency type "%s" not implemented', type));
 
   45 % if cell, converts to matrix
 
   50 [nsub, k] = size(subsets);
 
   57         temp = subsets(:, 1:m);
 
   61             y(m) = y(m)+f_type(temp(i, :), temp(j, :), nf);
 
   65 y = y*2/(nsub*(nsub-1)); % takes the average consistency
 
function featurestability(in subsets, in nf, in type, in type2)
function subsets2matrix(in subsets)
function feacons_kun(in s1, in s2, in nf)