1 %> @brief PCA-LDA demo, scores plots, cluster vectors
8 o = o.setbatch({
'hierarchy', 1});
9 blmisc_classlabels_hierarchy02 = o;
11 [blmisc_classlabels_hierarchy02, out] = blmisc_classlabels_hierarchy02.use(ds01);
12 ds01_hierarchy01 = out;
17 o = o.setbatch({
'flag_perc', 1, ...
27 o.blocks{1}.no_factors = 10;
31 cascade_pcalda01 = cascade_pcalda01.train(ds01_hierarchy01);
33 [cascade_pcalda01, out] = cascade_pcalda01.use(ds01_hierarchy01);
35 ds01_hierarchy01_pcalda01 = out;
40 %--------- Scores plots
42 o = o.setbatch({
'idx_fea', [1,2,3], ...
43 'confidences', 0.9, ...
49 vis_scatter2d01.use(ds01_hierarchy01_pcalda01);
54 %--------- Cluster vectors visualization
57 % Note that the third
class (Class
"E") is taken
as a reference -
this is arbitrary and just
for demonstration
60 'flag_trace_minalt', 0, ...
61 'flag_envelope', 0, ...
63 'peakdetector', peakdetector01, ...
64 'flag_bmtable', 0, ...
65 'data_input', ds01_hierarchy01, ...
66 'idx_class_origin', 3});
70 % Cluster vectors
as curves
72 ovi.
use(cascade_pcalda01);
73 title(
'Cluster Vectors as curves');
77 % Cluster Vectors
as "Peak Location Plots"
80 ovi.
use(cascade_pcalda01);
81 title(
'Cluster Vectors as "Peak Location Plots"');
function setbatch(in o, in params)
Sets several properties of an object at once.
function maximize_window(in h, in aspectratio, in normalizedsize)
function use(in o, in data)
Applies block to data.
function save_as_png(in h, in fn, in dpi)
Cascade block: fcon_pca -> fcon_lda.
function load_data_she5trays()
Select some given class levels.
Analysis Session (AS) base class.
Visualization - Cluster Vectors.