1 %>@brief Combined optimization of PCA number of factors & k-NN k
9 u.blocks{2}.hierarchy = 2;
11 cascade_stdhie01 = cascade_stdhie01.boot();
12 out = cascade_stdhie01.use(ds01);
22 clssr_pca_knn.blocks = {fcon_pca01, clssr_knn01};
33 u.sgs = sgs_crossval01;
34 u.clssr = clssr_pca_knn;
41 u.paramspecs = {
'blocks{1}.no_factors', 1:5:201, 0;
'blocks{2}.k', 1:5:106, 0};
48 log_gridsearch01 = gridsearch01.use(ds01_stdhie01);
55 u.dimspec = {[0 0], [1 2]};
56 u.valuesfieldname =
'rates';
59 vis_sovalues_drawimage01 = u;
61 out = log_gridsearch01.extract_sovaluess();
64 vis_sovalues_drawimage01.use(out{1});
Cascade block: final instantializable class.
Principal Component Analysis.
k-Nearest Neighbours Classifier
function maximize_window(in h, in aspectratio, in normalizedsize)
Draws image from a sovalues object.
Block that resolves estimato posterior probabilities into classes.
function save_as_png(in h, in fn, in dpi)
Demo cascade block: pre_norm_std -> blmisc_classlabels_hierarchy.
function load_data_she5trays()