IRootLab
An Open-Source MATLAB toolbox for vibrational biospectroscopy
demo_clssr_d.m
Go to the documentation of this file.
1 %>@brief Draws classification regions for classifiers LDC/QDC
2 %>@file
3 %>@ingroup demo
4 %>
5 %>@sa clssr_d
6 %>
7 
8 setup_load();
9 
10 
12 
13 clssr = clssr_d();
14 clssr.flag_use_priors = 0;
15 
16 % est = clssr.use(dslila);
17 % de = decider();
18 % est = de.use(est);
19 
20 pars.x_range = [1, 6];
21 pars.y_range = [3, 8];
22 pars.x_no = 200;
23 pars.y_no = 200;
24 pars.ds_train = dslila;
25 pars.ds_test = [];
26 pars.flag_last_point = 1;
27 pars.flag_link_points = 0;
28 pars.flag_regions = 1;
29 
30 figure;
31 
32 % Linear vs. ...
33 subplot(1, 2, 1);
34 
35 clssr.type = 'linear';
36 clssr = clssr.boot();
37 clssr = clssr.train(dslila);
38 
39 clssr.draw_domain(pars);
40 title('Linear case');
41 
42 
43 % ... Quadratic
44 subplot(1, 2, 2);
45 
46 clssr.type = 'quadratic';
47 clssr = clssr.boot();
48 clssr = clssr.train(dslila);
49 
50 clssr.draw_domain(pars);
51 title('Quadratic case');
52 
53 
54 maximize_window([], 2.2);
Linear and Quadratic discriminant.
Definition: clssr_d.m:9
function maximize_window(in h, in aspectratio, in normalizedsize)
function boot(in o)
Resets classlabels and calls clssr::boot()
Block that resolves estimato posterior probabilities into classes.
Definition: decider.m:10
function use(in o, in data)
Applies block to data.
Classifiers base class.
Definition: clssr.m:6
function draw_domain(in o, in parameters)
function load_data_userdata_nc2nf2()
function setup_load()
function train(in o, in data, in varargin)
Trains block.