1 %>@brief Bagging example
using SVM classifier and drawing classification regions.
5 %> Uses a 2D artificial data to show the classification boundaries of component classifiers and of the overall
8 %> @image html test_bagging_result01.png
9 %> <center>Figure 1 - classification domains of 6 component classifiers, each one trained on 5% of the data points
10 %> randomly picked.</center>
12 %> @image html test_bagging_result02.png
13 %> <center>Figure 1 - classification domain of classifier resulting from bagging the 6 classifiers represented in Figure 1.</center>
22 clssr_svm01.gamma = 1.2;
28 o.randomseed = 323233;
35 o.block_mold = clssr_svm01;
43 pars.x_range = [1, 6];
44 pars.y_range = [3, 8];
49 pars.flag_last_point = 1;
50 pars.flag_link_points = 0;
51 pars.flag_regions = 1;
57 subdatasets = ds01.split_map(sgs03.get_obsidxs(ds01));
60 pars.ds_train = subdatasets(i);
69 title(
'Aggregation of 6 SVM classifiers trained differently');
72 % disp(
clssr.get_treedescription());
function maximize_window(in h, in aspectratio, in normalizedsize)
function boot(in o)
Resets classlabels and calls clssr::boot()
Estimation Aggregator - Linear Combination of datasets.
function save_as_png(in h, in fn, in dpi)
function colors_markers()
function draw_domain(in o, in parameters)
function load_data_userdata_nc2nf2()
Support Vector Machine Classifier using LibSVM.
function train(in o, in data, in varargin)
Trains block.