1 %>@ingroup datasettools
3 %>@brief PCA pareto chart (number of PCs)x(% variance explained)
6 %> @param no_pcs Number of
"Principal Components"
13 var_total = sum(var(X));
17 f.flag_rotate_factors = 0;
18 f.no_factors = no_pcs;
22 data_pca = f.use(data);
25 vars = var(data_pca.X)/var_total*100;
27 plot(1:no_pcs,
integrate(vars),
'k',
'LineWidth', 2);
30 set(gca,
'XLim', [0, no_pcs+1]);
31 set(gca,
'XTick', 1:no_pcs);
32 title(
'PCA pareto chart');
34 ylabel(
'% variance explained');
36 % Copyright 2010 Julio Trevisan, Plamen P. Angelov & Francis L. Martin.
37 % e-mailing author: juliotrevisan@gmail.com
39 % This program is free software: you can redistribute it and/or modify
40 % it under the terms of the GNU General Public License
as published by
41 % the Free Software Foundation, either version 3 of the License, or
42 % (at your option) any later version.
44 % This program is distributed in the hope that it will be useful,
45 % but WITHOUT ANY WARRANTY; without even the implied warranty of
46 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
47 % GNU General Public License
for more details.
49 % A copy of the GNU General Public License is shipped along with
this
50 % program (filename:
"COPYING"). For an online version of the license,
Principal Component Analysis.
function data_draw_pca_pareto(in data, in no_pcs)
function data_eliminate_var0(in ds, in threshold)
Analysis Session (AS) base class.